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Abstract
Quantized detector networks (QDN) deal with observers and their apparatus
rather than with systems under observation. QDN can be used to investigate
the detailed structure of particle decays and the quantum Zeno effect without
assuming temporal continuity or invoking non-Hermitian Hamiltonians or
complex energies. The formalism is applied to single channel decays, the
ammonium molecule and neutral Kaon and B meson decays.

PACS numbers: 03.65.−w, 03.65.Ta, 03.65.Xp

1. Introduction

There are several interrelated reasons why time is normally assumed to be continuous in
standard quantum mechanics (SQM). These cannot be discussed here. On close inspection,
however, the continuity of time does not look quite so obvious. The problem is that there
are two mutually exclusive views about the nature of observation in physics. These were
discussed in detail by Misra and Sudarshan (M&S) in an influential paper on the quantum
Zeno effect [1]. On the one hand, no known principle forbids the continuity of time, so the
axioms of SQM are stated implicitly in terms of continuous time. When the Schrödinger
equation is postulated to be one of them [2], temporal continuity is assumed explicitly. On
the other hand, it is an empirical fact that no experiment can actually monitor an SUO (system
under observation) in a truly continuous way. The best that could be done in this respect
would be to perform a sequence of experiments with a decreasing measurement time scale, in
an attempt to see evidence for temporal continuity, such as in the phenomenon known as the
quantum Zeno effect [3].

M&S analysed particle decay processes and asked certain questions about them not
normally investigated in SQM. Three of these questions were referred to as P,Q and R and
this convention will be followed here. P(0, t; ρ) asks for the probability that an unstable
system prepared at time zero in state ρ has decayed sometime during the interval [0, t];
Q(0, t; ρ) asks for the probability that the prepared state has not decayed during this interval;
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and R(0, t1, t; ρ) asks for the probability that the state has not decayed during the interval
[0, t1], where 0 < t1 < t , and has decayed during the interval [t1, t]. M&S stressed that
these questions are not what SQM normally calculates, which is the probability distribution
of the time at which decay occurs, denoted by q. The difference is that the P,Q and R
questions involve a continuous set of observations, or the nearest practical equivalent of it,
during each run of the experiment, whereas q involves a set of repeated runs, each with a
one-off observation at a different time to determine whether the particle has decayed or not
by that time. Because P,Q and R involve a different experimental protocol to q, it should be
expected that empirical differences will be observed. Note that the observations M&S refer to
can have negative outcomes, i.e., an answer that a particle has not decayed by a certain time
counts as an observation.

M&S emphasized the limitations of SQM, stressing that although it works excellently
in many situations, SQM does not readily give a complete picture of experiments probing
questions such as P,Q and R. They concluded that ‘there is no standard and detailed theory
for the actual coupling between quantum systems and the classical measuring apparatus’.

Our approach to quantum mechanics, quantized detector networks (QDN) [4–7], attempts
to address some of the issues raised by M&S. In QDN, quantum wavefunctions are interpreted
as probability amplitudes for signals obtained by observers from physical apparatus, in contrast
to SQM, which assumes quantum wavefunctions describe states of SUOs. QDN was motivated
primarily by Heisenberg’s original vision of quantum mechanics, in which only quantities
accessible to an observer are regarded as physically meaningful [8].

QDN is reviewed briefly in the following section, followed by an application to the
simplest idealized decay process, a particle decaying via a single channel. The quantum Zeno
effect makes an appearance at this point and it is shown that the answer as to whether an SUO
decays whilst it is being monitored or whether it remains in its initial state depends on the
experimental context, i.e., the details of the apparatus and the measurement protocol involved.
Our aim in this paper is to show how complex phenomena such as neutral Kaon decay can
be discussed in QDN. To do this we show how to apply QDN to the ammonium molecule
and then the techniques developed there are applied to derive the Kaon decay regeneration
amplitudes originally discussed by Gell-Mann and Pais in SQM [9]. It will be seen that QDN
does not require the introduction of any ad hoc imaginary terms in any energies or the use of
non-Hermitian Hamiltonians.

2. The QDN formalism

Time in QDN is correlated with classically certain changes in the observer’s information about
their apparatus, and because this never happens in a continuous way, as we have emphasized,
integers are used rather than reals to represent time. Successive integers do not necessarily
represent equal intervals of the observer’s physical time.

QDN models apparatus by time-dependent networks of elementary signal detectors
(ESDs), each of which gives an unambiguous signal or else a no-signal when examined.
The ith ESD in a network at time n is represented by qubit Qi

n, but should not be automatically
identified with any dichotomous physical variable such as electron spin or photon polarization.
Individual ESDs do not endure in time, each having an operational function at a single time
only. There is no necessary correlation between ESD qubits carrying the same upper index
but with different times, i.e., Qi

n is unrelated to Qi
m when n �= m.

At time n, the rn ESD qubits in the net at that time constitute a quantum register
Rn ≡ Q1

n ⊗ Q2
n ⊗ · · · ⊗ Qrn

n , a tensor product of rank rn. Such registers contain entangled
states as well as separable states. QDN interprets entanglement as a property of labstates, the
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quantum signal states of the apparatus, rather than any property of states of SUOs, but this
does not mean that apparatus itself can be entangled.

In QDN there is always a natural, preferred basis Bn for Rn, consisting of all possible
classical (i.e., sharp) signal states. These are defined in terms of excitations of the void
state|0, n), the unique state in Rn for which every detector is in its ‘no-signal’ state, i.e.,
|0, n) ≡ |0, n)1|0, n)2 · · · |0, n)rn

(henceforth, the tensor product symbol ⊗ will be dropped
but is implied). The uniqueness of the basis comes from the observer’s knowledge about their
apparatus.

Associated with each qubit Qi
n in Rn is a one-signal operator A

+
i,n, which changes the

void state |0, n)i in Qi
n to its signal state |1, n)i , leaving all the other qubits unaffected, i.e.,

A
+
i,n|0, n) = |0, n)1 · · · |0, n)i−1|1, n)i |0, n)i+1 · · · |0, n)rn

. These operators generate disjoint
signal classes, consisting of all those elements in Bn created by a given number of distinct
signal operators. The zero-signal class consists of the void state |0, n) only, there are rn

one-signal basis states of the form A
+
i,n|0, n) and so on. The rn + 1 distinct signal classes

altogether contain all the 2rn elements of the natural basis Bn, and an arbitrary labstate is a
normalized linear combination of any of them. In this paper, only linear combinations of
one-signal labstates are needed.

QDN dynamics is described in terms of mappings of labstates from one ESD net to its
successor ESD net, which involves mappings between different Hilbert spaces. In order to
preserve total probability, QDN uses Born maps, which preserve norms. These are insufficient
to model all quantum processes, because they are not necessarily linear, so QDN uses semi-
unitary operators, which are linear Born maps. A semi-unitary operator U from H into H′

can exist if and only if dimH � dimH′. Semi-unitarity implies that U+U = I , where I is the
identity for H, which means that semi-unitary operators preserve inner products and not just
norms.

In the rest of this paper, dynamics will be discussed in terms of finite sequences
U1,0, U2,1, . . . , Un+1,n, . . . , UN,N−1, 0 < N, of semi-unitary evolution operators Un+1,n taking
labstates inRn to labstates inRn+1 and so on. Such operators satisfy the rule U

+
n+1,nUn+1,n = In,

where In is the identity operator in quantum register Rn [5]. The use of semi-unitary operators
implies that dimRn � dimRn+1 for 0 � n < N . In fact, for particle decay processes, it is
necessary to take dimRn < dimRn+1.

3. One species decays

In this section, QDN is used to describe the quantum physics of what in SQM would be called
an unstable particle, the initial state X of which can decay into some multiparticle state Y. At
all times total probability will be manifestly conserved. The momenta of the particles will be
ignored here, the discussion being designed to illuminate the basic principles of the formalism
only.

Typically, the sort of experiment of interest here can be repeated many times, and the
formalism gives the quantum description of an ensemble of runs of a basic experiment. Clocks
can always be reset, so a typical run of the experiment may be taken to start at time t = 0, at
which time the observer believes that they have prepared an X state (to use the language of
SQM). In QDN, this is represented by the labstate |�, 0) ≡ A

+
X,0|0, 0), which is automatically

normalized to unity.
By time 1, the labstate will have changed from |�, 0) to some new labstate |�, 1) given

by

|�, 1) = αA
+
X,1|0, 1) + βA

+
Y1,1|0, 1), |α|2 + |β|2 = 1. (1)

3
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The outcome possibilities of finding the void state |0, 1) or the two-signal state A
+
X,1A

+
Y1,1|0, 1)

are excluded on dynamical grounds: any run with either of these outcomes would be discounted
by the observer as contaminated by external influences (as happens in real experiments). From
(1), the amplitude A(X, 1|X, 0) for the particle not to have decayed by time 1 is given by
A(X, 1|X, 0) ≡ (0, 1|AX,1|�, 1) = α, whilst the amplitude A(Y, 1|X, 0) for the particle to
have made the transition to state Y by time 1 is given by

A(Y, 1|X, 0) ≡ (0, 1|AY1,1|�, 1) = β. (2)

Total probability is therefore conserved. On the right-hand side of (2), the label Y is itself
labelled by a subscript, in this case the number 1, which is the time at which the amplitude is
calculated for. The time at which a transition occurs is a crucial feature of the analysis, being
directly related to the measurement issues discussed by M&S [1].

The above process conserves signal class, so the dynamics can be discussed economically
in terms of the evolution of the signal operators rather than the labstates. For instance, evolution
from time 0 to 1 can be given in the form

A
+
X,0 → U1,0A

+
X,0U

+
1,0 = αA

+
X,1 + βA

+
Y1,1, (3)

where U1,0 is a semi-unitary operator satisfying the rule U
+
1,0U1,0 = I0, with I0 being the

identity for the initial register R0 ≡ QX
0 . The above process involves a change in rank, since

R1 ≡ QX
1 Q

Y1
1 . Because dimR1 > dimR0, the evolution operator is properly semi-unitary,

i.e., satisfies the condition U1,0U
+
1,0 �= I1, which is equivalent to irreversibility in SQM.

The description of the next stage of the process, from time 1 to time 2, is more subtle
and involves the concept of null test, which in SQM is any quantum test which extracts no
information from an initial state of an SUO. For example, an electron emerging from a Stern–
Gerlach apparatus S0 in the spin-up state would pass through another Stern–Gerlach apparatus
S1 unscathed, provided the magnetization axis of S1 was in the same direction as that of S0.

In QDN, it is not the case that a null test involves no change whatsoever in the observer’s
information of what is going on. The observer does have the information that time has
passed during the null test, and that fact is registered in the observer’s memory. Moreover, in
QDN, a labstate always changes in time, because the quantum register it is in changes with
time. What is relevant is the set of components of a labstate relative to the current signal
state basis, and it is those components which are related to outcome probabilities. If those
components do not change, then the observer may speak about the labstate as being constant
in time, but the observer will also have an awareness that the state is evolving in time as
well. In other words, the passage of time involves the observer as much as it involves the
labstate.

Considering the labstate of the above decay process at time 1, there are now two terms
to consider. The first term on the RHS in (3), αA

+
X,1, corresponds to a no decay outcome by

time 1 , and can be regarded as preparing at time 1 an initial X state which could subsequently
decay into a Y state or not, with the same dynamical characteristics as for the first stage of the
run, held between times 0 and 1. This assumes spatial and temporal homogeneity, a physically
reasonable assumption in the absence of gravitational fields and in the presence of suitable
apparatus. The second term, βA

+
Y1,1, corresponds to decay having occurred during the first

time interval. Such an outcome is irreversible in this example, but this is not an inevitable
assumption in general. Situations where the Y state could revert back to the X state are more
complicated but of empirical interest, such as in the ammonium maser and Kaon and B meson
decay. These scenarios are discussed later in this paper.
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Assuming homogeneity, the next stage of the evolution is given by

A
+
X,1 → U2,1A

+
X,1U

+
2,1 = αA

+
X,2 + βA

+
Y2,2, (4)

A
+
Y1,1 → U2,1A

+
Y1,1U

+
2,1 = A

+
Y1,2. (5)

Equation (5) is justified as follows. The decay term in (3), proportional to A
+
Y1,1 at time

1, corresponds to the possibility of detecting a decay product state Y at that time. Now
there is nothing which requires this information to be extracted precisely at that time. The
experimentalist could choose to delay information extraction until some later time, effectively
placing the decay product observation ‘on hold’ . As stated above, this may be represented
in SQM by passing a state through a null-test, which does not alter it. In QDN this is
represented by equation (5). Essentially, quantum information about a decay is isolated and
passed forwards in time until it is physically extracted.

The register R2 at time 2 has rank 3, being the tensor product R2 = QX
2 Q

Y1
2 QY2

2 . Semi-
unitary evolution from time zero to time 2 therefore gives

A
+
X,0 → U2,1U1,0A

+
X,0U

+
1,0U

+
2,1 = α2

A
+
X,2 + αβA

+
Y2,2 + βA

+
Y1,2, (6)

with the various probabilities being read off as the squared moduli of the corresponding terms.
It will be apparent from a close inspection of (6) that what appears to look like a spacetime

description with a specific arrow of time is being built up, with a memory of the change of rank
of the QDN register at time 1 being propagated forwards in time to time 2. This is represented
by the contribution involving A

+
Y1,2, which is interpreted as a potential decay process which

may have occurred by time 1, contributing to the overall labstate amplitude at time 2.
Subsequently the process continues in an analogous fashion, with the rank of the register

increasing by 1 at each timestep. By time n the dynamics gives

A
+
X,0 → Un,0A

+
X,0U

+
n,0 = αn

A
+
X,n + β

n∑
k=1

αk−1
A

+
Yk,n

, (7)

where Un,0 ≡ Un,n−1Un−1,n−2 · · · U1,0 is semi-unitary and satisfies the constraint U
+
n,0Un,0 =

I0. From (7), the survival probability Pr(X, n|X, 0) that the original state has not decayed
can be immediately read off and is found to be Pr(X, n|X, 0) = |α|2n . Provided β �= 0,
this probability appears to fall monotonically with increasing n, which corresponds to particle
decay.

The discussion at this point calls for some care with limits, because there arises the
theoretical possibility of encountering the quantum Zeno effect, as discussed by M&S [1]. In
the following, it will be assumed that |α| < 1, because |α| = 1 corresponds to a stable particle,
which is of no interest here.

Consider the physics of the situation. The calculated probabilities should relate to the
observer’s physical time t, the clock time used by the observer in the laboratory, which is
not assumed here to be a continuous variable on the microscopic level. The temporal label
n corresponds to a physical time t ≡ nτ , where τ is some reasonably well-defined time
scale characteristic of the apparatus. In the sort of experiments relevant here, τ will be on
a minute fraction of a second scale, but certainly nowhere near Planck time scales. The
smallest interval that could be achieved in practice would be of the order 10−23 s, which is on
the shortest hadronic resonance scale, comparable with the time light takes to cross a proton
diameter. More realistic measurement scales, involving electromagnetic processes, would be
in the 10−9 to 10−18 s range. Experimentalists would generally have a good understanding of
what τ was.

5
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Suppose first that we have some reason to believe that we can relate the transition amplitude
α to the characteristic time τ by the rule |α|2 ≡ e−�τ , where � is a characteristic inverse
time introduced to satisfy this relation. Then the survival probability P (tn) is given by
P (t) ≡ Pr(X, n|X, 0) = e−�t , which is the usual exponential decay formula. No imaginary
term proportional to � in any supposed Hamiltonian or energy has been introduced in order
to obtain exponential decay.

A subtlety may arise here however. Exponential decay implies that |α|2 is an analytic
function of τ with a Taylor expansion of the form

|α|2 = 1 − �τ + O(τ 2), (8)

i.e., one with a nonzero linear term. Under such circumstances, the standard result
limn→∞(1 − x/n)n = e−x leads to the exponential decay law. The possibility remains,
however, that the dynamics of the apparatus is such that the linear term in (8) is zero, so that
the actual expansion is of the form

|α|2 = 1 − γ τ 2 + O(τ 3), (9)

where γ is a positive constant [3]. Then in the limit n → ∞, where nτ ≡ t is held fixed, the
result is given by

lim
n→∞,nτ=t fixed

(1 − γ τ 2 + O(τ 3))n = 1, (10)

which gives rise to the quantum Zeno effect scenario. An expansion of the amplitude of
the form a = 1 + iµτ + ντ 2 + O(τ 3) is consistent with (9) for example, if µ is real and
µ2 + ν + ν∗ < 0.

To understand properly what is going on, it is necessary to appreciate that there are two
competing limits being considered: one where an SUO (to use conventional language) is
being repeatedly observed over an increasingly large macroscopic laboratory time scale t, and
another one where more and more observations are being taken in succession, each separated
on a time scale τ which is being brought as close to zero as possible by the experimentalist. In
each case, the limit cannot be achieved in the laboratory. The result is that in such experiments,
the specific properties of the apparatus and the experimental protocol may play a decisive role
in determining the results. If the apparatus is such that (8) holds, then exponential decay will
be observed, whereas if the apparatus behaves according to the rule (9), or any reasonable
variant of it, then approximations to the quantum Zeno effect should be observed.

The above scenario can be discussed efficiently in terms of semi-unitary matrices. A
semi-unitary matrix M is a r ′ × r complex matrix such that M+M = Ir , where Ir is the r × r

identity matrix. No semi-unitary matrix exists if r ′ < r .
Consider the X decay scenario discussed above. If the initial labstate is represented by

the 1 × 1 column vector �0 ≡ [1], then the action of U1,0 acting on the labstate |�, 0) given
by (1) may be represented by the action of the 2 × 1 semi-unitary matrix U1,0 ≡ [α β]T

acting on �0. Then the labstate at time 1 is represented by the 2 × 1 column vector �1

given by �1 = U1,0�0 = [α β]T . The two required transition amplitudes are just the various
components of this vector.

For n > 0, the relevant semi-unitary matrix is

Un+1,n =
[

α β 0T
n

0n 0n In

]T

,

where 0n is a column of n zeros and 0T
n is its transpose. This leads to the final state

�n = Un,n−1Un−1,n−2 · · · U1,0�0 = [αn βαn−1 · · · αβ β]T . (11)

6
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The squared modulus of the first component of this column vector gives the same survival
probability |α|2n as before. It is also easy to read off all the other transition amplitudes
and from them determine discrete time versions of the P,Q and R functions discussed by
M&S [1].

Although the QDN analysis gives results which look formally like the standard decay
result, the scenario involved is equivalent to that discussed by M&S, namely, there is a
constant questioning (or its discrete equivalent) by the apparatus as to whether decay has taken
place or not. In this case the results are simple. For Kaon and B meson decays, the results are
more complicated.

4. The ammonium system

The explanation by Gell-Mann and Pais [9] of the phenomenon of regeneration in neutral Kaon
decay was a successful application of SQM to particle physics. In the standard calculation
[10], a non-Hermitian Hamiltonian is used to introduce the two decay parameters needed to
describe the observations. We will show that QDN readily reproduces the results of the Gell-
Mann and Pais calculation whilst conserving total probability and without the introduction of
any complex energies.

The analysis of the Kaon system is more complex than the single particle decay process
discussed above, involving the interplay of two distinct neutral Kaons, K0 and its antiparticle,
K̄0. In order to understand the QDN approach to neutral Kaon decay, it will be necessary to
review first how systems such as the ammonium molecule are dealt with.

When translation and rotational symmetries are ignored, the ammonium molecule is
described in SQM by a superposition of two orthonormal states, each of which represents
one of the two possible position states of the single nitrogen atom relative to the plane
defined by the three hydrogen atoms. These two states form a basis for a two-dimensional
Hilbert space describing the system. Relative to this basis, the Hamiltonian for the system

is represented by the Hermitian matrix H = [e f

f ∗ g

]
, where e and g are real and f can

be complex. If the state of the molecule is represented at time t by the two-component
wavefunction �(t) ≡ [�1(t) �2(t)]T , then the Schrödinger equation ih̄dt�(t) = H�(t) has
the general solution �j (t) = Aj e−iω+t + Bj e−iω−t , j = 1, 2, where Aj and Bj are constants
and ω± = 1

2 {e + g ±
√

4|f |2 + (e − g)2}. This gives time-dependent transition probabilities
which are periodic with a frequency given by the difference ω+ − ω−.

In the QDN description, it is assumed that there are two different states, X, Y , with signal
operators A

+
X,n, A

+
Y,n respectively, evolving according to the rule

Un+1,nA
+
X,n|0, n) = {

aA
+
X,n+1 + bA

+
Y,n+1

}|0, n + 1),

Un+1,nA
+
Y,n|0, n) = {

cA
+
X,n+1 + dA

+
Y,n+1

}|0, n + 1),
(12)

where Un+1,n is a semi-unitary operator. Semi-unitarity requires the constraints |a|2 + |b|2 =
|c|2 + |d|2 = 1, a∗c + b∗d = 0, which are equivalent to unitarity in SQM in this case. All other
states will be disregarded on the basis that there are no dynamical channels between them and
states X, Y . With a suitable choice of phases, Un+1,n can be represented by the semi-unitary

matrix U = [a −b∗

b a∗
]

, where an overall possible phase factor is ignored and a and b are as

above. The eigenvalues z± of U are given by z± = 1
2 {a + a∗ ± i

√
4 − (a + a∗)2}. These are

complex conjugates of each other and have magnitude unity, so can be written in the form
z± = exp {±iθ}, where θ is real. Writing a ≡ |a| eiα, where α is real, then cos θ = |a| cos α.

U can always be written in the form U = V
[eiθ 0

0 e−iθ

]
V+, where V = [u −v∗

v u∗
]

and |u|2 + |v|2 = 1.

7
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It follows that Un = V
[einθ 0

0 e−inθ

]
V+, which gives

A
+
X,0 → {|u|2 einθ + |v|2 e−inθ }A+

X,n + u∗v{einθ − e−inθ }A+
Y,n,

A
+
Y,0 → uv∗{einθ − e−inθ }A+

X,n + {|u|2 e−inθ + |v|2 einθ }A+
Y,n.

(13)

Hence the conditional probabilities are given by

Pr (X, n|X, 0) = Pr(Y, n|Y, 0) = |u|4 + |v|4 + 2|u|2|v|2 cos (2nθ) ,

Pr(Y, n|X, 0) = Pr(X, n|Y, 0) = 4|u|2|v|2 sin2 (nθ) , (14)

which agrees with the SQM expressions when 2nθ = (ω+ − ω−)t .
It was noted in [3] that a survival probability of the form P(τ) ∼ 1 − γ τ 2 + O(τ 3) would

be needed to make observations of the quantum Zeno effect viable. The above calculation of
the ammonium survival probabilities is compatible with this, as can be seen from the expansion
Pr (X, n|X, 0) = |u|4 + |v|4 + 2|u|2|v|2 cos (2nθ) ∼ 1 − 4|u|2|v|2n2θ2 + O

(
n4θ4

)
. Therefore,

it is predicted that the quantum Zeno effect (or at least behaviour analogous to it) should be
observable in the ammonium system, if the right experimental conditions are set up. As with
the particle decays discussed in the previous section, it would be necessary to ensure that the
two limits, t → ∞, τ → 0, were carefully balanced.

5. Kaon-type decays

More complex systems such as neutral Kaon decay are readily discussed in QDN. Consider
three different particle states, X, Y and Z, making transitions between each other in the specific
way described below. An important example of such behaviour in particle physics involves the
neutral Kaons, with X representing a K0 meson, Y representing a K̄0 meson and Z representing
their various decay products. Kaon decay is remarkable for the phenomenon of regeneration,
in which the Kaon survival probabilities fall and then rise with time. More recently, a similar
phenomenon has been observed in B meson decay [11].

As before, attention can be restricted to one-signal states. The dynamics is described by
the transition rules

A
+
X,n → αA

+
X,n+1 + βA

+
Y,n+1 + γ A

+
Zn+1,n+1, (15)

A
+
Y,n → uA

+
X,n+1 + vA

+
Y,n+1 + wA

+
Zn+1,n+1, (16)

A
+
Zn,n

→ A+
Zn,n+1, (17)

where semi-unitarity requires the transition coefficients to satisfy the constraints |α|2 + |β|2 +
γ |2 = |u|2 + |v|2 + |w|2 = 1, α∗u + β∗v + γ ∗w = 0. The above process is a combination of
the decay and oscillation processes discussed in previous sections.

The dynamics given by (15)–(17) rules out transitions from Z states to either X or Y states.
Therefore, once a Z state is created, it remains a Z state, so there is an irreversible flow from
the X and Y states and these eventually disappear. Before that occurs however, there will be
back-and-forth transitions between the X and Y states which give rise to the phenomenon of
regeneration.

In actual Kaon decay experiments, pure K0 states can be prepared via the strong
interaction process π− + p → K0 + �, whilst pure K̄0 states can be prepared via the process
π+ + p → K+ + K̄0 + p. In our notation, these preparations correspond to initial labstates
A

+
X,0|0, 0) and A

+
Y,0|0, 0) respectively. In practice, superpositions of K0 and K̄0 states may

be difficult to prepare directly, but the analysis of Gell-Mann and Pais shows that such states

8



J. Phys. A: Math. Theor. 41 (2008) 095301 G Jaroszkiewicz

could in principle be prepared indirectly [9]. Therefore, labstates corresponding to X and Y
superpositions are physically meaningful and will be used in the following analysis.

Consider an initial labstate of the form |�, 0) ≡ {
x0A

+
X,0 + y0A

+
Y,0

} |0, 0), where
|x0|2 + |y0|2 = 1. Matrix methods are appropriate here. The dynamics of the system
will be discussed in terms of the initial column vector �0 ≡ [x0 y0]T , equivalent to the
statement that each run of the experiment starts with the rank-2 net register R0 ≡ QX

0 QY
0 . The

dynamical rules (15)–(17) map labstates in R0 into R1 ≡ QX
1 QY

1 Q
Z1
1 , so there is a change of

rank from 2 to 3. The transition is represented by the semi-unitary matrix U1,0 ≡ [α β γ

u v w

]T
,

which subsequently generalizes to

Un+1,n ≡

⎡
⎢⎣

α β γ 0T
n

u v w 0T
n

0n 0n 0n In

⎤
⎥⎦

T

, n > 0, (18)

where In is the n × n identity matrix and 0n is a column of n zeros. The observer’s detector
net increases rank by 1 over each time step. The labstate at time t is represented by a column
vector �n with n + 2 components, given by �n = Un,n−1Un−1,n−2 · · · U2,1U1,0�0. Overall
probability is conserved, because of the semi-unitarity of the transition operators.

As before, the key to unravelling the dynamics is linearity, which is guaranteed by the
use of semi-unitary evolution operators. Suppose the labstate �n at time n is represented
by �n = [xn yn zn,n · · · z1,n]T , where the components xn and yn are such that xn = λnx0

and yn = λny0, where λ is some complex number to be determined. Such labstates will
be referred to as eigenmodes. They are not eigenstates of any physical operator, but their
first two components, xn and yn behave as if they were. The dynamics gives the relations
xn+1 = αxn +uyn = λxn, yn+1 = βxn +vyn = λyn and zn+1,n+1 = γ xn +wyn. Experimentalists
will be interested principally in survival probabilities for the X and Y labstates, so the dynamics
of Z states will be ignored here, i.e., the behaviour of the components zk,n for k < n will not
be discussed. Clearly, however, the QDN formalism is capable of giving much more specific
details about the process than just the X and Y survival probabilities.

It will be seen from the above that λ is an eigenvalue of the matrix
[α u

β v

]
, which

means that in principle there are two solutions, λ+ and λ−, for the eigenmode values, given
byλ± = 1

2 {α + v ±
√

(α − v)2 + 4βu}. It is expected that these will not be mutual complex
conjugates in actual experiments, because if they were, the analysis could not explain observed
Kaon physics. Therefore, the coefficients α, β, u and v will be such that the above two
eigenmode values are complex and of different magnitude and phase, giving rise to two decay
channels with different lifetimes, as happens in neutral Kaon decay. In the SQM analysis of
neutral Kaon decays, Gell-Mann and Pais described the neutral Kaons as superpositions of
two hypothetical particles known as K0

1 and K0
2 , which are CP eigenstates and have different

decay lifetimes [9]. The K0
1 decays to a two pion state with a lifetime of about 0.9 × 10−10 s

whilst the K0
2 decays to a three pion state with a lifetime of about 0.5 × 10−7 s.

Semi-unitarity guarantees that |xn+1|2 + |yn+1|2 + |zn+1,n+1|2 = |xn|2 + |yn|2, and so it can
be deduced that

|λ|2 = 1 − |zn+1,n+1|2
|xn|2 + |yn|2 < 1, n = 0, 1, 2, . . . , (19)

given |xn|2 + |yn|2 > 0. From this and the conditions xn = λnx0, yn = λny0, the eigenmode
values can be written in the form λ1 = ρ1 eiθ1 , λ1 = ρ2 eiθ2 , where ρ1, ρ2 < 1 and θ1 and
θ2 are real. The eigenmodes at time t = 0 corresponding to λ1 and λ2 will be denoted by
�1,0 and �2,0 respectively, i.e. �1,0 = [a1 b1]T ,�2,0 = [a2 b2]T , and then the evolution

9
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rules give �1,n = [λn
1a1 λn

1b1 cn,n · · · c1,n]T ,�2,n = [λn
2a2 λn

2b2 dn,n · · · d1,n]T , where
the coefficients {ck,n}, {dk,n} can be determined from the dynamics. The initial modes �1,0

and �2,0 are linearly independent provided λ1 and λ2 are different. Given that, then any initial
labstate �0 can be expressed uniquely as a normalized linear combination of �1,0 and �2,0,

i.e., �0 = µ1�1,0 + µ2�2,0, for some coefficients µ1 and µ2. This is the analogue of the
decompositions |K0〉 = {∣∣K0

1

〉
+

∣∣K0
2

〉}/√
2, |K̄0〉 = {∣∣K0

1

〉 − ∣∣K0
2

〉}/√
2 in the Gell-Mann

and Pais approach.
From this, the amplitude A(X, n|�, 0) to find an X signal at time n is given by

A (X, n|�, 0) = µ1a1λ
n
1 + µ2a2λ

n
2, so that the survival probability for X is given by

Pr(X, n|�, 0) = |µ1|2|a1|2ρ2n
1 + |µ2|2|a2|2ρ2n

2 + 2ρn
1 ρn

2 Re{µ∗
1µ2a

∗
1a2 e−i(θ1−θ2)}, and similarly

for Pr (Y, n|�, 0).
There is scope here for various limits to be considered, as discussed in the single

channel decay analysis, such that either particle decay is seen or the quantum Zeno effect
appears to hold over limited time spans. If we are justified on empirical grounds in writing
ρn

1 ≡ e−�1t/2, ρn
2 ≡ e−�2t/2, where t ≡ nτ and �1, �2 correspond to long and short lifetime

decay parameters respectively, then the various constants can always be chosen to get full
agreement with the standard Kaon survival intensity functions

I (K0) = (e−�1t + e−�2t + 2e−(�1+�2)t/2 cos �mt)/4, (20)

I (K̄0) = (e−�1t + e−�2t − 2e−(�1+�2)t/2 cos �mt)/4 (21)

for pure K0 decays. Here �m is proportional to the proposed mass difference between the
hypothetical K0

1 and K0
2 ‘particles’, which are each CP eigenstates and are supposed to

have CP conserving decay channels. From the QDN approach, such objects need not exist.
Instead, they are regarded as manifestations of different possible superpositions of K0 and
K̄0 labstates, each of which is physically realizable via the strong interactions, as mentioned
above. Conversely, the apparatus dynamics may be such that quantum Zeno-type effects are
observed instead of long-term decays. Again, this will depend on the details of the experiment
chosen.

6. Concluding remarks

It has been shown here how QDN can give an instrumentalist description of particle decays
and the quantum Zeno effect consistent with the spirit of Heisenberg’s approach to QM.
It provides an alternative description of quantum processes with a novel interpretation of
quantum wavefunctions. Avoiding SUOs eliminates some of the problematical concepts
associated with QM. Instead of thinking about elementary particles as strange, non-classical
objects which sometimes appear to be waves and sometimes particles, we need to think only
in terms of how laboratory apparatus responds to physical manipulation by observers. This
seems to be a useful and economical way of discussing experimental quantum physics, with a
promise of leading to a more dynamical understanding of the relationship between observers
and apparatus.
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